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Query learning aims to improve the generalization ability of a network that continuously learns by ac-
tively selecting nonredundant data, i.e., data that contain new information about the process. In this pa-
per, we formulate the problem of query learning in the statistical mechanical framework. We define an
information theoretic measure of the informativeness of the newly presented data in order to decide if
the latter should be used for the model update or not. Only the data that carry new information about
the underlying process are selected for learning. The informativeness of the new data is defined as the
Kullback-Leibler distance between the likelihood of the a posteriori parameter distributions obtained be-
fore and after the inclusion of the new data point. In order to make the problem analytically solvable,
we formulate the theory for the ensemble of higher-order neural networks, i.e., for the case of polynomi-
al models. Comparison with other theoretical approaches is included. Simulations that validate the pro-

posed theory are also included.

PACS number(s): 87.10.+e, 02.50.Ph, 02.50.Wp, 05.90. +m

I. INTRODUCTION

In the last years, several research works [1-6] in the
field of neural networks have addressed the interesting
problem of active data selection, also known as “‘query
learning.” The idea behind query learning is to actively
decide if a new data point is used for the model update or
not, depending on the previously learned examples. This
active selection is, therefore, of fundamental importance
for the generalization capabilities of the model. The
latter stems from the fact that it avoids overtraining in
the input space regions where the excessive data is
present. In order to further clarify the importance of
data selection, let us suppose that due to the data acquisi-
tion characteristics most, but not all, of the observed data
are clustered in a single region of the input space. Simul-
taneously, let us assume that the requirement for the de-
rived model is to be valid in the whole input space. In
this case, the network training will use all of its resources
in the region where the data are concentrated and neglect
the other regions where the few data are available.
Another possible scenario is the case where off-line data
are available. In the latter, in order to build a model with
good interpolation capability over the whole input space,
data points should be chosen (“experiment design”
[7-10)) in such a way that the nonredundancy is avoided.
The essential problem is, therefore, to define a measure of
the new data informativeness for a given model architec-
ture and a given set of previously seen example patterns.

Two principal approaches can be distinguished: the
heuristic [3-5] and the approach derived from the
minimization of an object function [1,2,6]. We concen-
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trate in this paper on the second approach, i.e., we for-
mulate an information-theory based objective function
that measures the informativeness of a sequential data in
the framework of the statistical mechanics. This novel
informativeness measure of the incoming data is defined
as the Kullback-Leibler distance between the probability
of the output given the input and the past trained data
(likelihood), and the same probability including the new
data in the trained set. In this form the novelty is mea-
sured in the input-output space and not in the parameter
space [2]. In order to formulate a theoretic approach to
this problem, we have chosen the mechanical statistical
ensemble formulation for supervised learning [11-15].
We apply the herein developed theory to polynomial
models, i.e., higher-order neural networks. We do so due
to the fact that in this case all integration can be per-
formed analytically without approximation.

In Sec. II, we review the statistical mechanics ap-
proach to the ensemble of networks. Section III defines
the novel informativeness measure while Sec. IV applies
the latter to the case of polynomial models. Section V
presents numerical results.

II. PROBABILITY INFERENCE
WITH AN ENSEMBLE OF NETWORKS

Let us consider a feedforward neural network
parametrized by a weight vector w. We use the following
notation: x for the N-dimensional input vector, y for the
M-dimensional teacher output vector, and f(x,w) for the
M-dimensional outputs of the network. The statistical
physics approach models the input-output relation by
considering an ensemble of neural networks. The goal of
supervised learning given P examples

D(P)___{(x(q)’y(q))’ ISqSP} (1)
is to model the probability of predicting a new input-

output pair (x,y), for which we use the notation
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ply/x,D'P) . )

Let us define the conditional probability p(y/x,w) as
the likelihood of the pair (y,x) for the network w. In the
ensemble theory, the model corresponds to a combination
of individual networks from the ensemble. Mathemati-
cally we can express the prediction probability of the en-
semble of neural networks by the equation

p(y/x,D(P))=fp(w/D(P))p(y/x,w)dw , (3)

where p(w/D'P) is called a posteriori probability of the
ensemble in the parameter space. It is clear that if we
have this a posteriori probability, no learning process is
necessary for defining the final model.

Let us first assume a model for the likelihood of a pair
(x,y) for the network w. Levin, Tishby, and Solla [11] in-
troduced a statistical description of the training process
by postulating that the maximization of the likelihood
should be equivalent to the minimization of the additive
error. Therefore, a smooth and monotonic function ¢
should exist such that

P P
[Ty /%9, w)=¢ [2 e(y'?/x9w) |, @
g=1

q=1

where e(y'?/x'?,w) is a measure of the error of the net-
work w for the pattern q. The only solution of Eq. (4) is
given by Ref. [11]:

e—Be(y/x,w)
p(y/x,w)=——z— , (5)
with
Z:fe—ﬁe(y/x,w)dy . (6)

Let us assume the quadratic error
ely/x,w)=|ly—f(x,w)|?, @)

which results in the Gaussian probability distribution of

the input-output pair for the network w:

e ~Bly—fxw)?
V7/BM

The a posteriori probability in the parameter space

p(w/D'P) can be defined by means of the maximum en-

tropy principle. The latter results in a probability distri-
bution function whose entropy

— [ p(w/DP)n[p(w/DP)]dw ©)

ply/x,w)= (8)

is maximal. If the appropriate constraint is posed on the
average ensemble error, the Gibbs distribution is ob-
tained:

P
—B ey ?/x'D,w)

=1

Z(P) ’

where the normalization factor Z is the partition function
of the ensemble defined by

p(w/DP)=2E (10)
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P
—B e(y'?/xD,w)
zp)=[e dw . (11)

In the case where the quadratic error function [Eq. (7)] is
used, the final model is given by

P
exp |[—B [ly'?—£(x'?,w)|?
g=1

p(y/x,D“”)Zf ZP)

e ~Bly—fxw|?
—dw, (12)
z

or, equivalently

_Z(P+1)
zZ(P)

We see from Eq. (13) that the evaluation of the likeli-
hood that the new point is measured accurately has been
reduced to the calculation of the partition function Z.
The latter is in most of the cases nonintegrable without
approximations. We show in Sec. IV that the nonlinear
models, which are linear in the parameters, allow exact
integration of Eq. (11). Hence, it is possible to derive an
analytical model of the ensemble of polynomials.

It is important to notice that the only free parameter is
BB, which is thermodynamic is associated with the inverse
of the ensemble temperature. A special case is the error-
free learning problem where the observables are noise-
free and realizable. In this case, the result of Denker
et al. [16] can be recovered in the lines B— o, i.e., when
the ensemble of networks yields a deterministic model.

ply/x,D'P) (13)

III. DATA INFORMATIVENESS MEASURE

The informativeness measure N (P) of the new data
pair can now be defined as the Kullback-Leibler distance
between the likelihoods of correctly representing the new
output based on models with and without the new point,
respectively,

P+1
N(P)= 2 K(p(y/x‘”,D‘P)),p(y/x(”,D(PH’)) , (14)

i=1
where the Kullback-Leibler distance is defined as
K(p(y/x?,DP) p(y/x?, DP+1)y)

= @ @y py/x?,D
fp(y/x D )lnp(y/x(i)’D(P+1))

MacKay [2] (see also Refs. [17 and 18]) proposes to
measure the informativeness of a new data by just
measuring its novelty in the parameter space, i.e., by the
quantity

NW(P)=K(p(w/D**V) p(w/DP)) . (16)

P))

dy . (15)

In other words, the novelty is measured only by the infor-
mation gain in the parameter space. The relationship be-
tween these two measures is discussed at the end of Sec.
IV.
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IV. DATA INFORMATIVENESS
IN HIGHER-ORDER NETWORK ENSEMBLES

The statistical mechanical theory presented in Sec. II is
applied herein to the special case of higher-order neural
networks, i.e., polynomial networks. In the case of mod-
eling with an ensemble of polynomial, exact analytical re-
sults can be obtained due to the linearity of this model
J

N T=(1,x1, ... x@ x\x2), ..

where R is the order of the used polynomial network.
The most important quantity to be calculated is the parti-
tion function, which can be written using Egs. (11) and (7)
as

P
M -8B 2 (yi(q)Afi(x(q),wi))z
ZP)=J[ fe dw; . (19)
i=1
We use the Taylor expansion of the exponent around the
point w P, defined as the point where the error

P
E;‘(P)= z(yi(q)_fi(x(q)’wi))z (20)
=1

has its minimum. Due to the linearity in the parameter,
the minimum is a global minimum and can be easily
found by using the Moore-Penrose inverse. At this point
the gradient is equal to zero, i.e.,

VE{P|,, =0. 1)

The Taylor expansion is then given by

P — (P T P
EP=EP|, +3(w,—wp)VVEP|, (w;,—wp),
!

(22)

which is exact. Replacing Eq. (22) in Eq. (19) the integral
adopt then the Gaussian form and therefore can be easily
calculated yielding

—BE'P|
Z(P)=e "2 MP2(det(2BOP)) M/ (23)
where D =dim(w;)=1+N+N2+ - -+ + NR and the ma-
trix ®'F is defined by

P . .
®(P):%VVE;P)|WPA= zt“’(t“’)T 24)

! i=1

p—E
det[I+6(0P)~1)

p(y/x,D”’))=%e

where

1‘2’—1n{det[1+9<®“”)“]1

1955

with respect to the parameters.
Let us define a higher-order neural network by the
function f(x,w) given by

[i(x9w)=wlt, 1<i<M (17)

for each output i. w/ is the parameter vector for the out-
put i and the vector t is defined by

L Px, o x xR, (18)

f

with
(P— o (P)
EV=3E" . (25)
i=1

We need to calculate also Z(P +1). To do that we use
the Taylor expansion of E{f*" around the point wp,

which is defined above. We obtain

(P+1)— P+1) T
E{FTV=EFU, +(w,—wp)VE |,
i

i

+ 3w, —wp)IVVEP TV (W, —wp) (26)
and after reordering
Ei(P+l)=Ei(P+“|wP_+%(wi __wPi +b‘ )TVVE,'(P+1)IwP_

X(wi—wpi+bi)

—NVE;|, YUVVEl, )"NVEl, ), @7
P, Pi Pi

i

where the error at the new point is

E,~=(y,-—f,-(x,wpi)) (28)

and

b,=—(VVE, )7'VE],, . (29)

After integration of a Gaussian function we obtain,
—BE (P+1)

Z(P+1)=e "P(2r)YMP/2(det(2B@' P +1))~M/2

BE|, (tT(@P+D)~Ty)
e P

X (30)

Using Egs. (23), (30), and (13), it is possible to write the
likelihood of a new data as

(31)
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M
E=2(y,-*—f,-(x,wpi))2 (32)
i=1
is the error of the new point and
o=tt” (33)

with the vector t defined for the new point. In Eq. (31), we have used the fact that

1

(P)y—17—=
det[I+9(® ) ]— l—tT(®(P+l))—Tt ’

(34)

which can be easily derived by using the relation of Fedorov [7]

det( 4 +accT)=det(A)(1+acT4 " lc) .

The unity matrix was noted by 1.

(35)

Equation (31) defines the prediction probability of a new point given P examples. Using Eq. (31), we can calculate the

informativeness of a new data analytically:

K(p(y/x(”,D(P’),p(y/x“),D(P“L”))=%1n

det[I+6(@F+D)~1]

[ £(x'2,wp)—£(xD,w(p 1))

+

det[I+6(0P)™1]
det[I+6(®@P)~1]

det[IT+6(@F D)~ 1]

1
2

with 6 defined for the new pattern i. Inserting the last
equation in the definition of the novelty N (P) of Eq. (14),
we obtain an analytical measure of the informativeness of
the new data. The novelty in the parameter space defined
in Eq. (16) can be also analytically calculated yielding

NW(P)=%1n[det(1 FT@P)"11)] . (37)

On the other hand, it follows from Eq. (31) that the max-
imum of the likelihood corresponds to the zeros error
E =0. Hence, the output of the network is equal to

f(x'9,wp) (38)

and

p(y/%,DP)= %e ~(M/2)in[det(T+6(0P)~1)] 39)

The quantity in the exponent can be rewritten by using
the Fedorov equality (see Ref. [5]) as

Lin[det(I+6(0P)1)]
=ln[det(J +t7(@")7't)] .  (40)

In fact, the exponent of Eq. (39) is a measure of the
range of confidence for the new point and it is identical
with the novelty NW(P) measured in the weight space.
So, we have derived the latter novelty in a different way.
This deviation explicitly implies that the novelty in the
parameter space is a good measure only if £ =0. On the
other hand, the regions where the novelty is important
are the regions where E is normally big. Therefore, we
conclude that a good measure of novelty should include
both terms like those defined in Egs. (14) and (15) and cal-
culated for the polynomial case in Eq. (36).

det[I+6(@F 1)1

—1, (36)
a

V. NUMERICAL RESULTS

The informativeness of the new data is shown here in
the following example. Originally, a polynomial of the
order 6 is used to obtain 12 data points unevenly distri-
buted in the region [ —1,0.8], which are compromised

FIG. 1. New data informativeness measure. The figure de-
picts the training data pairs (x,y), the obtained sixth-order poly-
nomial model, as well as the two measures of innovativeness.
I,, informativeness measure according to Eq. (36); I,, informa-
tiveness measure according to Eq. (40).
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with the additive Gaussian noise. The model is assumed
to be a polynomial of the same order. Due to the small
number of training data and the presence of noise, the ob-
tained model parameters will differ from the real ones in
spite of the correct polynomial order. Hence, an addi-
tional input-output data pair could have strong influence
on the model accuracy, especially if it is in the region not
covered by the original 12 points.

The informativeness measure introduced in this paper
is calculated for the 900 points within the given interval
[—1,0.8] with T =10 and it is depicted in Fig. 1 as the
curve I,. For comparison, the measure of informative-
ness in the parameter space only is depicted as I,. In ad-
dition, the same figure shows the noisy measurement of
the original system whose informativeness was measured
as well as the optimal model fit at the same points.

It is visible that both measures are peaked in the re-
gions where the modeling error is large. Nevertheless,
the positions of their maximum differ. This is an essen-
tial difference since the point with maximum informative-
ness would be selected and added to the training set in
the experiment design process.

1957
VI. CONCLUSIONS

In this paper, an information-theoretic based objective
function that measures the informativeness of a sequen-
tial data in the framework of the statistical mechanical
formulation of learning and generalization was formulat-
ed. This theory is especially suitable for the implementa-
tion of active data selection, known also as query learn-
ing. The aim of the latter is to improve the generaliza-
tion ability of a network that continuously learns by ac-
tively selecting optimal nonredundant data, i.e., data that
content new information for the model. In our model,
only the data that carry new information are selected for
learning. The novel informativeness measure of the in-
coming new data is defined as the Kullback-Leibler en-
tropy between the probability of the output given the in-
put and the past trained data (likelihood), and the same
probability but including the new data in the trained
data. We apply the developed theory for polynomial
models, i.e., higher-order neural networks, due to the fact
that in this case all integrals can be performed analytical-
ly without approximation.
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